metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C12.15C42, C42.1Dic3, C12.24M4(2), C3⋊C16⋊3C4, C8.32(C4×S3), (C4×C12).1C4, (C2×C24).1C4, C3⋊1(C16⋊C4), C8⋊C4.4S3, C24.42(C2×C4), (C2×C8).150D6, (C2×C8).1Dic3, C6.2(C8⋊C4), C4.22(C4×Dic3), C12.C8.6C2, (C2×C6).20M4(2), C4.6(C4.Dic3), (C2×C24).260C22, C2.3(C42.S3), C22.3(C4.Dic3), (C3×C8⋊C4).5C2, (C2×C12).302(C2×C4), (C2×C4).70(C2×Dic3), SmallGroup(192,25)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C12.15C42
G = < a,b,c | a12=c4=1, b4=a9, bab-1=a5, ac=ca, cbc-1=a9b >
(1 29 36 13 25 48 9 21 44 5 17 40)(2 33 18 14 45 30 10 41 26 6 37 22)(3 31 38 15 27 34 11 23 46 7 19 42)(4 35 20 16 47 32 12 43 28 8 39 24)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(2 14 10 6)(3 11)(4 8 12 16)(7 15)(18 30 26 22)(19 27)(20 24 28 32)(23 31)(33 45 41 37)(34 42)(35 39 43 47)(38 46)
G:=sub<Sym(48)| (1,29,36,13,25,48,9,21,44,5,17,40)(2,33,18,14,45,30,10,41,26,6,37,22)(3,31,38,15,27,34,11,23,46,7,19,42)(4,35,20,16,47,32,12,43,28,8,39,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,14,10,6)(3,11)(4,8,12,16)(7,15)(18,30,26,22)(19,27)(20,24,28,32)(23,31)(33,45,41,37)(34,42)(35,39,43,47)(38,46)>;
G:=Group( (1,29,36,13,25,48,9,21,44,5,17,40)(2,33,18,14,45,30,10,41,26,6,37,22)(3,31,38,15,27,34,11,23,46,7,19,42)(4,35,20,16,47,32,12,43,28,8,39,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,14,10,6)(3,11)(4,8,12,16)(7,15)(18,30,26,22)(19,27)(20,24,28,32)(23,31)(33,45,41,37)(34,42)(35,39,43,47)(38,46) );
G=PermutationGroup([[(1,29,36,13,25,48,9,21,44,5,17,40),(2,33,18,14,45,30,10,41,26,6,37,22),(3,31,38,15,27,34,11,23,46,7,19,42),(4,35,20,16,47,32,12,43,28,8,39,24)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(2,14,10,6),(3,11),(4,8,12,16),(7,15),(18,30,26,22),(19,27),(20,24,28,32),(23,31),(33,45,41,37),(34,42),(35,39,43,47),(38,46)]])
42 conjugacy classes
class | 1 | 2A | 2B | 3 | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 8E | 8F | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 16A | ··· | 16H | 24A | ··· | 24H |
order | 1 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 16 | ··· | 16 | 24 | ··· | 24 |
size | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 12 | ··· | 12 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | - | - | + | ||||||||||
image | C1 | C2 | C2 | C4 | C4 | C4 | S3 | Dic3 | Dic3 | D6 | M4(2) | M4(2) | C4×S3 | C4.Dic3 | C4.Dic3 | C16⋊C4 | C12.15C42 |
kernel | C12.15C42 | C12.C8 | C3×C8⋊C4 | C3⋊C16 | C4×C12 | C2×C24 | C8⋊C4 | C42 | C2×C8 | C2×C8 | C12 | C2×C6 | C8 | C4 | C22 | C3 | C1 |
# reps | 1 | 2 | 1 | 8 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 2 | 4 |
Matrix representation of C12.15C42 ►in GL4(𝔽97) generated by
91 | 0 | 36 | 46 |
0 | 91 | 0 | 91 |
0 | 0 | 81 | 0 |
0 | 0 | 0 | 81 |
87 | 90 | 40 | 95 |
90 | 50 | 33 | 63 |
59 | 23 | 96 | 83 |
53 | 51 | 55 | 58 |
1 | 55 | 2 | 35 |
0 | 96 | 0 | 65 |
0 | 0 | 22 | 59 |
0 | 0 | 0 | 75 |
G:=sub<GL(4,GF(97))| [91,0,0,0,0,91,0,0,36,0,81,0,46,91,0,81],[87,90,59,53,90,50,23,51,40,33,96,55,95,63,83,58],[1,0,0,0,55,96,0,0,2,0,22,0,35,65,59,75] >;
C12.15C42 in GAP, Magma, Sage, TeX
C_{12}._{15}C_4^2
% in TeX
G:=Group("C12.15C4^2");
// GroupNames label
G:=SmallGroup(192,25);
// by ID
G=gap.SmallGroup(192,25);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,253,64,387,100,1123,102,6278]);
// Polycyclic
G:=Group<a,b,c|a^12=c^4=1,b^4=a^9,b*a*b^-1=a^5,a*c=c*a,c*b*c^-1=a^9*b>;
// generators/relations
Export